click to
look inside
Look inside
Manning Early Access Program (MEAP) Read chapters as they are written, get the finished eBook as soon as it’s ready, and receive the pBook long before it's in bookstores.
FREE
You can see any available part of this book for free.
Click the table of contents to start reading.

Algorithms and Data Structures for Massive Datasets

Dzejla Medjedovic, Emin Tahirovic, and Ines Dedovic
  • MEAP began July 2020
  • Publication in July 2021 (estimated)
  • ISBN 9781617298035
  • 325 pages (estimated)
  • printed in black & white

placing your order...

Don't refresh or navigate away from the page.
print book Receive a print copy shipped to your door + the eBook in Kindle, ePub, & PDF formats + liveBook, our enhanced eBook format accessible from any web browser. $38.99 $59.99 you save: $21 (35%) pBook + eBook + liveBook
Additional shipping charges may apply
FREE domestic shipping on orders of three or more print books
Algorithms and Data Structures for Massive Datasets (print book) added to cart
continue shopping
go to cart

eBook Our eBooks come in Kindle, ePub, and DRM-free PDF formats + liveBook, our enhanced eBook format accessible from any web browser. $31.19 $47.99 you save: $17 (35%) 3 formats + liveBook
FREE domestic shipping on orders of three or more print books
Algorithms and Data Structures for Massive Datasets (eBook) added to cart
continue shopping
go to cart

Many people know about classical algorithms for common tasks like hashing, sorting, searching. But what if the data to handle can’t fit in memory anymore? This book provides the answers!

Jean-François Morin
Look inside
Data structures and algorithms that are great for traditional software may quickly slow or fail altogether when applied to huge datasets. Algorithms and Data Structures for Massive Datasets introduces a toolbox of new techniques that are perfect for handling modern big data applications. You'll discover methods for reducing and sketching data so it fits in small memory without losing accuracy, and unlock the algorithms and data structures that form the backbone of a big data system. Filled with fun illustrations and examples from real-world businesses, you'll learn how each of these complex techniques can be practically applied to maximize the accuracy and throughput of big data processing and analytics.

about the technology

Modern data-intensive applications are outpacing traditional data structures and algorithms. Huge data sets rapidly grow beyond available memory, becoming slow and inefficient, and bottlenecking development. Fortunately, you don't need to blow your budget on expensive upgrades to your computing power! Algorithms and Data Structures for Massive Datasets lays out ways to sketch data in main memory and organize data on disk to make the best use of your available resources. Taken from the latest research papers, these effective techniques apply to any discipline, from finance to text analysis.

about the book

Algorithms and Data Structures for Massive Datasets teaches you to take advantage of data processing and analytics techniques specifically designed for large distributed datasets. And you'll be amazed how easy it is to learn such a challenging topic from this friendly guide! Complex concepts are illustrated with interesting, entertaining graphics and fascinating industry stories that show how these techniques have succeeded in the real world. You'll study examples including Google BigTable, BitCoin, and a smart bed sensor app, learning to build data sketches for processing, querying and exploring large datasets. By the time you're done, you'll be able to identify the perfect algorithm to deliver faster and more reliable results for any data intensive system.

what's inside

  • Sketching data structures for practical problems
  • Choosing the right database engine for your application
  • Evaluating and designing efficient on-disk data structures and algorithms
  • Understanding the algorithmic tradeoffs involved in massive-scale systems
  • Deriving basic statistics from streaming data
  • Correctly sampling streaming data
  • Computing percentiles with limited space resources

about the reader

For programmers familiar with fundamental data structures. Examples in R and pseudocode.

about the author

Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab of the computer science department at Stony Brook University, NY in 2014. She has worked on a number of projects in algorithms for massive data, taught algorithms at various levels and also spent some time at Microsoft. Emin Tahirovic earned his doctorate in biostatistics from UPenn in 2016, and his master's degree in theoretical computer science from Goethe University in Frankfurt in 2008. He has worked for DBahn AG as an IT consultant and he regularly consults on projects for pharma and tech companies. Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision of the Department of Electrical Engineering at RWTH Aachen University, Germany. She has worked as a researcher at the Research Center Jülich and is currently employed as a software developer for camera systems at Jonas & Redmann, an automation company.

FREE domestic shipping on orders of three or more print books

If you're wondering how to deal with your next data set, check this book out.

Tim van Deurzen

An excellent book about algorithms and data structure for massive datasets, with great visual examples.

Diego Casella
RECENTLY VIEWED