Algorithms and Data Structures for Massive Datasets you own this product

Dzejla Medjedovic, Emin Tahirovic, and Ines Dedovic
  • May 2022
  • ISBN 9781617298035
  • 304 pages
  • printed in black & white
filed under

placing your order...

Don't refresh or navigate away from the page.
eBook Our eBooks come in DRM-free Kindle, ePub, and PDF formats + liveBook, our enhanced eBook format accessible from any web browser. $47.99
Algorithms and Data Structures for Massive Datasets (eBook) added to cart
continue shopping
adding to cart

audio + liveBook With liveAudio you get a professional voice recording along with online access to the book. You can search and select the text to navigate the audio, or download it as m4a files. Includes the eBook in liveBook format. $49.99
Algorithms and Data Structures for Massive Datasets (audio + liveBook) added to cart
continue shopping
adding to cart

print + eBook Receive a print copy shipped to your door + the eBook in Kindle, ePub, & PDF formats + liveBook, our enhanced eBook format accessible from any web browser. $59.99
FREE domestic shipping on orders of three or more print books
Algorithms and Data Structures for Massive Datasets (print + eBook) added to cart
continue shopping
adding to cart

An accessible and beautifully illustrated introduction to probabilistic and disk-based data structures and algorithms.

Marcus Young, Prosper Marketplace
Look inside
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets.

In Algorithms and Data Structures for Massive Datasets you will learn:

  • Probabilistic sketching data structures for practical problems
  • Choosing the right database engine for your application
  • Evaluating and designing efficient on-disk data structures and algorithms
  • Understanding the algorithmic trade-offs involved in massive-scale systems
  • Deriving basic statistics from streaming data
  • Correctly sampling streaming data
  • Computing percentiles with limited space resources

Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy.

about the technology

Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud.

about the book

Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases.

what's inside

  • Probabilistic sketching data structures
  • Choosing the right database engine
  • Designing efficient on-disk data structures and algorithms
  • Algorithmic tradeoffs in massive-scale systems
  • Computing percentiles with limited space resources

about the reader

Examples in Python, R, and pseudocode.

about the authors

Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany.

FREE domestic shipping on orders of three or more print books

Upgrade your knowledge of algorithms and data structures from textbook level to real-world level.

Rui Liu, Oracle

Excellently explains scalable data structures and algorithms. A must-read for any data engineer.

Alex Gout, Shopify

A detailed, practical approach to dealing with distributed system and data architectures.

Satej Kumar Sahu, Honeywell
RECENTLY VIEWED