Deep Learning with PyTorch
Eli Stevens, Luca Antiga, and Thomas Viehmann
Foreword by Soumith Chintala
  • July 2020
  • ISBN 9781617295263
  • 520 pages
  • printed in black & white

With this publication, we finally have a definitive treatise on PyTorch. It covers the basics and abstractions in great detail.

From the Foreword by Soumith Chintala, Cocreator of PyTorch
Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you—and your deep learning skills—become more sophisticated. Deep Learning with PyTorch will make that journey engaging and fun.

About the Technology

Although many deep learning tools use Python, the PyTorch library is truly Pythonic. Instantly familiar to anyone who knows PyData tools like NumPy and scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It's excellent for building quick models, and it scales smoothly from laptop to enterprise. Because companies like Apple, Facebook, and JPMorgan Chase rely on PyTorch, it's a great skill to have as you expand your career options. It's easy to get started with PyTorch. It minimizes cognitive overhead without sacrificing the access to advanced features, meaning you can focus on what matters the most - building and training the latest and greatest deep learning models and contribute to making a dent in the world. PyTorch is also a snap to scale and extend, and it partners well with other Python tooling. PyTorch has been adopted by hundreds of deep learning practitioners and several first-class players like FAIR, OpenAI, FastAI and Purdue.

About the book

Deep Learning with PyTorch teaches you to create neural networks and deep learning systems with PyTorch. This practical book quickly gets you to work building a real-world example from scratch: a tumor image classifier. Along the way, it covers best practices for the entire DL pipeline, including the PyTorch Tensor API, loading data in Python, monitoring training, and visualizing results. After covering the basics, the book will take you on a journey through larger projects. The centerpiece of the book is a neural network designed for cancer detection. You'll discover ways for training networks with limited inputs and start processing data to get some results. You'll sift through the unreliable initial results and focus on how to diagnose and fix the problems in your neural network. Finally, you'll look at ways to improve your results by training with augmented data, make improvements to the model architecture, and perform other fine tuning.

What's inside

  • Training deep neural networks
  • Implementing modules and loss functions
  • Utilizing pretrained models from PyTorch Hub
  • Exploring code samples in Jupyter Notebooks

About the reader

For Python programmers with an interest in machine learning.

About the authors

Eli Stevens had roles from software engineer to CTO, and is currently working on machine learning in the self-driving-car industry. Luca Antiga is cofounder of an AI engineering company and an AI tech startup, as well as a former PyTorch contributor. Thomas Viehmann is a PyTorch core developer and machine learning trainer and consultant. consultant based in Munich, Germany and a PyTorch core developer.
Deep Learning with PyTorch authors Luca Antiga (L) and Eli Stevenson (R) eating dessert in San Francisco's Mission District with the book's editor Frances Lefkowitz. Luca is from Bergamo, Italy, Eli lives in San Jose, and Frances hails from San Francisco.

placing your order...

Don't refresh or navigate away from the page.
print book $49.99 pBook + eBook + liveBook
Additional shipping charges may apply
Deep Learning with PyTorch (print book) added to cart
continue shopping
go to cart

eBook $39.99 3 formats + liveBook
Deep Learning with PyTorch (eBook) added to cart
continue shopping
go to cart

Prices displayed in rupees will be charged in USD when you check out.
customers also bought
customers also reading

This book

FREE domestic shipping on three or more pBooks

RECENTLY VIEWED