Adversarial Machine Learning

Untargeted Attacks on Your Classifier you own this product

This project is part of the liveProject series Adversarial Machine Learning
prerequisites
intermediate Python (NumPy) • intermediate scikit-learn • intermediate Keras/TensorFlow
skills learned
basics of untargeted adversarial attacks (FGSM, PGD) • create an attack generator (Adversarial Robustness Toolbox - ART)
Ferhat Özgur Catak
1 week · 6-8 hours per week · INTERMEDIATE
filed under

placing your order...

Don't refresh or navigate away from the page.
liveProject This project is part of the liveProject series Adversarial Machine Learning liveProjects give you the opportunity to learn new skills by completing real-world challenges in your local development environment. Solve practical problems, write working code, and analyze real data—with liveProject, you learn by doing. These self-paced projects also come with full liveBook access to select books for 90 days plus permanent access to other select Manning products. $19.99 $29.99 you save $10 (33%)
Untargeted Attacks on Your Classifier (liveProject) added to cart
continue shopping
adding to cart

Look inside

Play the villain! Your goal is to mislead an existing DL model into incorrectly predicting the pattern. First, you’ll load your dataset, learn its structure, and examine a few random samples using OpenCV or Matplotlib. Using NumPy, you’ll prepare your dataset for training. Then, it’s attack time: Using FGSM and PGD, you’ll generate malicious inputs for the model in an effort to predict any class other than the correct one. Finally, you’ll enlist NumPy again to evaluate the success ratio of your attacks.

This project is designed for learning purposes and is not a complete, production-ready application or solution.

book resources

When you start your liveProject, you get full access to the following books for 90 days.

project author

Ferhat Özgur Catak

Ferhat Ozgur Catak is an associate professor of computer science at the University of Stavanger, Norway. He has experience developing machine/deep learning models for cybersecurity, security for deep learning models, and data privacy using statistical and cryptographic methods. He has also been involved in several national, international, and NATO-wide security and research activities.

prerequisites

This liveProject is for intermediate Python programmers who know the basics of data science. To begin this liveProject, you’ll need to be familiar with the following:

TOOLS
  • Intermediate Python
  • Jupyter Notebook
TECHNIQUES
  • Model classification
  • Evaluate model performance
  • Basic plotting using Matplotlib
  • Computer vision basics (reading and displaying images, and converting and resizing them into feature vectors)

you will learn

In this liveProject, you’ll learn to generate malicious inputs to mislead a DL model into predicting any other class than the correct one.

  • Load CNN-based image classifier model using Keras
  • Visualize images and parts of your model using cv2
  • Visualize images and parts of your neural network using Matplotlib
  • Perform mathematical operations on images using NumPy

features

Self-paced
You choose the schedule and decide how much time to invest as you build your project.
Project roadmap
Each project is divided into several achievable steps.
Get Help
While within the liveProject platform, get help from other participants and our expert mentors.
Compare with others
For each step, compare your deliverable to the solutions by the author and other participants.
book resources
Get full access to select books for 90 days. Permanent access to excerpts from Manning products are also included, as well as references to other resources.
RECENTLY VIEWED