Deep Learning with Structured Data
Mark Ryan
  • MEAP began August 2019
  • Publication in December 2020 (estimated)
  • ISBN 9781617296727
  • 264 pages (estimated)
  • printed in black & white

An excellent companion towards the journey of mastering deep learning. A must read book for MS and PhD students who wish to apply deep learning in their research and development projects.

Irfan Ullah
Deep learning offers the potential to identify complex patterns and relationships hidden in data of all sorts. Deep Learning with Structured Data shows you how to apply powerful deep learning analysis techniques to the kind of structured, tabular data you'll find in the relational databases that real-world businesses depend on. Filled with practical, relevant applications, this book teaches you how deep learning can augment your existing machine learning and business intelligence systems.

About the Technology

Most businesses are far more interested in accurate forecasting and fraud detection using their existing structured datasets than identifying cats in YouTube videos. Powerful deep learning techniques can efficiently extract insight from the kind of structured data collected by most businesses and organisations. Deep learning demands less feature tuning than other machine learning methods, takes less code to maintain, and can be automated to crawl your business’s databases in order to detect unanticipated patterns a human would never even notice. Thanks to the availability of cloud environments adapted to deep learning and to recent improvements in deep learning frameworks, deep learning is now a viable approach to solving problems with structured data.

About the book

Deep Learning with Structured Data shows you how to bring powerful deep learning techniques to your business’s structured data to predict trends and unlock hidden insights. In it, deep learning advocate Mark Ryan takes you through cleaning and preparing structured data for deep learning. You’ll learn the architecture of a Keras deep learning model, along with techniques for training, deploying, and maintaining your model. You’ll discover ways to get quick wins that can rapidly show whether your models are working, and techniques for monitoring your model’s ongoing functionality. Throughout, an end-to-end example using an open source transit delay dataset illustrates deep learning’s potential for unraveling problems and making predictions from large volumes of structured data.

What's inside

  • The benefits and drawbacks of deep learning
  • Organizing data for your deep learning model
  • The deep learning stack
  • Measuring performance of your models

About the reader

For readers with an intermediate knowledge of Python, Jupyter notebooks, and machine learning.

About the author

Mark Ryan has 20 years of experience leading teams delivering IBM’s premier relational database product. He holds a Master's degree in Computer Science from the University of Toronto.

placing your order...

Don't refresh or navigate away from the page.
Manning Early Access Program (MEAP) Read chapters as they are written, get the finished eBook as soon as it’s ready, and receive the pBook long before it's in bookstores.
print book $59.99 pBook + eBook + liveBook
Additional shipping charges may apply
Deep Learning with Structured Data (print book) added to cart
continue shopping
go to cart

eBook $47.99 3 formats + liveBook
Deep Learning with Structured Data (eBook) added to cart
continue shopping
go to cart

Prices displayed in rupees will be charged in USD when you check out.
customers also bought
customers also reading

This book 1° 2° 3°

FREE domestic shipping on three or more pBooks

RECENTLY VIEWED