Time Series Forecasting Using Foundation Models takes a practical approach to solving time series problems using pre-trained foundation models. In this easy-to-follow guide, you’ll learn instantly-useful skills like zero-shot forecasting and informing pretrained models with your own data. You’ll put theory into practice immediately as you start building your own small-scale foundation model to illustrate pretraining, transfer learning, and fine-tuning in chapter 2. Next, you’ll dive into cutting-edge models like TimeGPT and Chronos and see how they can deliver zero-shot probabilistic forecasting, point forecasting, and more. You’ll even find out how you can reprogram an LLM into a time-series forecaster. All the Python code and hands-on experiments run on a normal laptop. No high-performance GPU required!
Time Series Forecasting in Python teaches you how to get immediate, meaningful predictions from time-based data such as logs, customer analytics, and other event streams. In this accessible book, you’ll learn statistical and deep learning methods for time series forecasting, fully demonstrated with annotated Python code. Develop your skills with projects like predicting the future volume of drug prescriptions, and you’ll soon be ready to build your own accurate, insightful forecasts.